
Multi-Entrypoint Applications: allowing the binary to
self-regulate an application deployment with multiple

levels of privilege separation
Jake Hillion

University of Cambridge
jake.hillion@cl.cam.ac.uk

Abstract
Operating systems are providing more facilities for process
isolation than ever before, realised in technologies such as
Containers [CN] and systemd slices [CN]. These systems
separate the design of the program from the systems that
create privilege separation.

Multi-Entrypoint Applications bring the privilege separa-
tion back into the program itself. By using a trusted shim
and binfmt_misc [CN], an application started with minimal
privileges can achieve full separation. High-level language
features provide an easy interface to privilege separation.

I present a summary of the privilege separation features
in modern Linux, the system design of multi-entrypoint
applications, the language front-ends to support it, and an
evaluation on a series of example applications.

CCS Concepts: •Computer systems organization→ Em-
bedded systems; Redundancy; Robotics; • Networks →
Network reliability.

Keywords: datasets, neural networks, gaze detection, text
tagging

ACM Reference Format:
Jake Hillion. 2022. Multi-Entrypoint Applications: allowing the
binary to self-regulate an application deployment with multiple
levels of privilege separation. J. ACM 37, 4, Article 111 (August 2022),
4 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
TODO

Author’s address: Jake Hillion, University of Cambridge, jake.hillion@cl.
cam.ac.uk.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0004-5411/2022/8-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

2 Motivation
TODO

2.1 Threat Model
I present a threat model in which application binaries are
trusted absolutely. That is, the software provider had no
ill intent, and once the binary is on disk, it will not change
without permission. This means that one can trust the binary
to set up its own security, as it is protecting not against malice
by its own developers, but instead bugs in the software.

3 Background
3.1 File Descriptor Passing
File descriptor passing is the act of handing a file descriptor
(in this case a capability) to a foreign process. As the mem-
ory representation of a file descriptor on Linux is a simple
number, passing it to a different process does not immedi-
ately confer access to that file descriptor. To pass the file
descriptor in a meaningful way, there must be some kernel
intervention.

Modern Linux provides multiple methods for file descrip-
tor passing. Three will be studied here: fork, CLONE_FILES,
and sendmsg. When a new process is forked, the file-descriptor
table of the forking process is duplicated and given to the new
child process. Altering these tables in each process, for exam-
ple by opening a new file, does not alter the table in the other
process. This is known as copy-on-write. This behaviour can
be altered by calling clone(2) with the CLONE_FILES flag.
This keeps the tables in sync, rather than allowing them to
diverge. Finally, file descriptors can be sent as ancillary data
in a sendmsg call. This requests that the kernel create a new
file descriptor in the foreign table when recvmsg is called,
allowing for more targeted file-descriptor transfers.

As file-descriptor passing is fundamental to this applica-
tion, understanding the performance of these techniques
was highly important. Each of send and receive are studied,
as the asynchronous protocols allow for these to differ in
performance. That is, the send may be cheap, but require
more work to be done when the file descriptor is received.
The results of this study are given in Figure [FN].

TODO: Complete performance study.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA Jake Hillion

Figure 1. Interaction between the application and the envi-
ronment.

4 System Design
An example of running a multi-entrypoint application is
given in Figure 1. What was originally a monolithic applica-
tion becomes a set of applications that communicate with
a new shim. The shim does not replace the kernel, and in-
stead supplements it with new higher-level abilities. Each
entrypoint receives input from the shim, and may be able to
return data if appropriate. Most of this data is in the form
of file descriptors, which are treated as capabilities in this
system.

A multi-entrypoint application stores the requirements
for running it as static data in the ELF of the binary. When
launched, binfmt_misc is used to launch the application
with the multi-entrypoint shim. The shim decodes this data
and sets up processes and IPC accordingly.

The shim takes advantage of high levels of privilege to
be able to more effectively deprivilege an application than
an application with ambient authority could. For example,
creating a new network namespace requires CAP_SYS_ADMIN,
which would give many applications more privilege than
they require. By deferring to a shim with extra privileges, this
trusted code can be written only once, and avoid conferring
more privileges than otherwise required.

5 Language Frontends
The language frontends are an extremely important part
of this project, closing the gap between a static privilege
separation solution like SELinux [CN] and a dynamic one
like Capsicum [5]. I have implemented a language frontend
in Rust and will describe it in this section.

5.1 Rust
The Rust frontend uses macros to wrap functions with

high-level primitives into multi-entrypoint compatible en-
trypoints. Further, it allows calling these functions using the
new interface via the shim. Consider the example in Listing
1.

Firstly, the encrypt entrypoint is created. This is a regu-
lar Rust function which takes two high-level File objects, a
wrapped file descriptor. The entrypoint macro wraps this
function, providing in its place an extern "C" function that

Listing 1. A sample application using the Rust language
frontend.
[e n t r y p o i n t]
fn e n c r y p t (mut i n : F i l e , mut out : F i l e)

[e n t r y p o i n t]
fn main () {

l e t i n p u t _ f i l e = . . . ;
l e t o u t p u t _ f i l e = . . . ;

e n c r y p t (i n p u t _ f i l e , o u t p u t _ f i l e) ;
}

Listing 2. An application that requires only stdout and
stderr.
[e n t r y p o i n t (s t d o u t)]
fn main () { p r i n t l n ! (" h e l l o ␣ world ! ") ; }

is unmangled and takes argc/argv. This allows functions
with high-level arguments to be used as normal, with the
argument parsing abstracted away by the library.

Second is the ordinary main function for the application.
This is also tagged as an entrypoint, allowing the library to
help out with more calls. The example given here is that of
the encrypt method, which uses the API seen above. The use
of macros here allows the call to encrypt to remain type safe,
even though the call must pass through an external interface
(the shim itself).

A significant benefit to this approach is the ease of dis-
abling the multi-entrypoint application. By turning the en-
trypoint macro into identity with a crate feature, the code is
compiled without the aid of the multi-entrypoint shim. This
allows for significantly easier debugging, as the application
follows a single execution path, rather than needing to be
debugged as a distributed application.

6 Example Applications
6.1 No Permissions
The cornerstone of strong process separation is an appli-
cation that is completely deprivileged. Listing 2 shows an
application which, when run under the shim, drops all privi-
leges except stdout. This is easy to achieve under the shim.

6.2 gzip
GNU gzip [2] is well structured for privilege separation,
though doesn’t implement it by default. There is a clear split
between the processing logic, selecting the items to do work
on, and the compression/decompression routines, each of
which are handed a pair of input and output file descriptors.
This is shown by Watson et al. in [5].

Multi-Entrypoint Applications Conference’17, July 2017, Washington, DC, USA

Figure 2. Process separation in a TLS server.

As C is not an adapted language for multi-entrypoint ap-
plications, adapting it is slightly more verbose than the other
examples seen. However, the resulting code change is still
only X lines, if a bit more intricate. This places the risky
compression and decompression routines in full sandboxes,
while still allowing the simpler argument processing code
ambient authority. The argument processing code needs no
additional permissions to be able to handle this permission-
ing, as the required permissions are provided by the shim.

6.3 TLS Server
Finally, a rudimentary TLS server is created to show the rich
privilege separation abilities of multi-entrypoint applications.
An example structure is shown in Figure 2. Rather than being
provided with a view of the network, the initial TCP handling
process is given an already bound socket listener by the shim.
This allows the TCP handler to live in an extremely restricted
zero-access network namespace, while still performing the
tasks of receiving new TCP connections.

Next, the TCP handler hands off the new TCP connections
to the shim. Though the figure shows this as a direct con-
nection between the TCP handler and the TLS handler, they
are passed through the shim, from which the shim spawns a
fresh TLS handler for each connection. The TLS handler is
handed file descriptors to the certificate and key files that it
requires, and hands back a decrypted request reader and an
empty response writer file descriptor to the shim.

Finally, this pair of decrypted request reader and response
writer are handed to a new process which handles the re-
quest. In the example case, this new process is handed a dirfd
to /var/www/html, which is bind-mounted into an empty
file system namespace by the shim. This allows the request
handler enough access to serve files, while restricting access
to anything else.

7 Evaluation
TODO

8 Related Work
8.1 Virtual Machines and Containers
Virtual Machine solutions [1, 4] provide the ability to split a
single machine into multiple virtual machines. When plac-
ing a single application in each virtual machine, they are
effectively isolated from one another. Full fat container solu-
tions such as Docker [CN], containerd [CN], and systemd-
nspawn [CN] provide mechanisms to isolate an application
almost completely from other applications running on a sin-
gle machine. Some have claimed that this provides isolation
superior to virtual machines [3].

Both of these solutions are less effective at isolating parts
of an application from itself [CN with research]. Consider
running only a TLS web server in a virtual machine. Al-
though other applications will be unable to access the cer-
tificates, as they are in different virtual machines, methods
within the application that should not be able to access the
certificates still can.

While virtual machines and containers provide a strong
isolation at the application level, they are not a compelling
solution to intra-application privilege separation.

8.2 systemd
systemd [CN] provides a declarative interface to all of the
process separation techniques used in this work. Rather than
the responsibility of the programmer, creating these declara-
tive descriptions is most commonly left to the package main-
tainers. This work seeks to provide similar capabilities to the
people best suited to privilege separating an application: the
developers.

8.3 Capsicum
Capsicum [5] extends UNIX file descriptors in FreeBSD to re-
flect the rights on the object they hold. These capabilities may
be shared between processes as other file descriptors (§3.1).
The goals of both software are the same: make privilege
separated software better. However, we take quite different
approaches. Multi-entrypoint applications focus on building
a static definition really close to the code, while Capsicum al-
lows processes to dynamically privilege separate. This allows
applying static analysis to the policies, while also keeping
the definition close to the code.

9 Future Work
9.1 Dynamic Linking
TODO

10 Conclusion
TODO

Conference’17, July 2017, Washington, DC, USA Jake Hillion

Acknowledgments
TODO: acknowledgements

References
[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the art of virtualization. ACM SIGOPS Operating Systems Review
37, 5 (Oct. 2003), 164–177. https://doi.org/10.1145/1165389.945462

[2] Jean-loup Gailly. 2020. Gzip. https://www.gnu.org/software/gzip/
[3] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and

Larry Peterson. 2007. Container-based operating system virtualization:

a scalable, high-performance alternative to hypervisors. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2007 (EuroSys ’07). Association for Computing Machinery, New
York, NY, USA, 275–287. https://doi.org/10.1145/1272996.1273025

[4] Inc. VMware. 2008. Understanding Full Virtualization, Par-
avirtualization and Hardware Assist. Technical Report.
https://www.vmware.com/content/dam/digitalmarketing/vmware/
en/pdf/techpaper/VMware_paravirtualization.pdf

[5] Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway.
2010. Capsicum: Practical Capabilities for UNIX.. In USENIX Security
Symposium, Vol. 46. 2.

https://doi.org/10.1145/1165389.945462
https://www.gnu.org/software/gzip/
https://doi.org/10.1145/1272996.1273025
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf

	Abstract
	1 Introduction
	2 Motivation
	2.1 Threat Model

	3 Background
	3.1 File Descriptor Passing

	4 System Design
	5 Language Frontends
	5.1 Rust

	6 Example Applications
	6.1 No Permissions
	6.2 gzip
	6.3 TLS Server

	7 Evaluation
	8 Related Work
	8.1 Virtual Machines and Containers
	8.2 systemd
	8.3 Capsicum

	9 Future Work
	9.1 Dynamic Linking

	10 Conclusion
	Acknowledgments
	References

