
Void Processes: Minimising privilege by default on
Linux
Jake Hillion

University of Cambridge
United Kingdom

jake.hillion@cl.cam.ac.uk

Abstract
Operating systems are providing more facilities for process
isolation than ever before, realised in technologies such as
Containers [CN] and systemd slices [CN]. These systems
separate the design of the program from the systems that
create privilege separation.

Void Processes take these techniques to the extreme, re-
moving access to everything but syscalls from a process by
default. This work focuses on adding back slivers of privilege
to achieve functional applications with minimal privilege.

I present a summary of the privilege separation features
in modern Linux, the system design of void processes, the
language front-ends to support it, and an evaluation on a
series of example applications.

CCS Concepts: •Computer systems organization→ Em-
bedded systems; Redundancy; Robotics; • Networks →
Network reliability.

Keywords: datasets, neural networks, gaze detection, text
tagging
ACM Reference Format:
Jake Hillion. 2022. Void Processes: Minimising privilege by default
on Linux. J. ACM 37, 4, Article 111 (August 2022), 8 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
Void processes take advantage of modern Linux namespaces
to attempt to run applications without exposing them to the
system itself. Void processes use a mixture of Linux names-
paces and file descriptive based capabilities to allow running
purpose-built applications without expecting the support of
the standard Linux system. During the process of building

Author’s address: Jake Hillion, University of Cambridge, United Kingdom,
jake.hillion@cl.cam.ac.uk.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0004-5411/2022/8-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

such a system, gaps in the kernel were exposed, given that
this work is at the edge of what main spaces can achieve.
This work will go onto detail the process of creating void pro-
cesses themselves, re-adding features that these processes
need to do useful work, and the learnings of what features are
missing in the user-space kernel APIs to succeed in creating
processes this way.

This work explores the question of what is an operating
system by taking a novel approach to running applications
with the system exposed in an entirely different way. Rather
than limiting the access of a process or set of processes to
the operating system, such as in containers, we instead limit
the access to the operating system with more explicit meth-
ods per process. Interaction between processes is allowed
by specifying such interaction statically at compile time, re-
moving any separation between the application developer
and the system controlling access to the application, unlike
solutions such as SELinux.

2 Motivation
This work aims to explore the limits of the Linux userspace
APIs in the context of complete process isolation, producing
a software ecosystem to support running applications with
fully minimised privilege. Further, discussion will be made of
which parts of the API are well-suited and which are not, and
how they might be better designed. Finally, the performance
of absolute separation is evaluated, to find out at what cost
this can be achieved in the current kernel.

Void processes aim to serve a different purpose than con-
tainers. Rather than virtualising a different operating system
with the same kernel, void processes aim to remove all but
what is necessary to run the application from the current
operating system. The cut down appearance of the OS is
still the same OS, rather than bringing in new utilities and
libraries from perhaps a different OS. It would be possible to
include this feature as an extension, but it is not the primary
goal. This difference is important when deciding the features
of the application, particularly the decision to exclude time
namespaces (§4.1.8).

2.1 Threat Model
I present a threat model in which application binaries are
trusted absolutely. That is, the software provider had no
ill intent, and once the binary is on disk, it will not change

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA Jake Hillion

without permission. This means that one can trust the binary
to set up its own security, as it is protecting not against malice
by its own developers, but instead bugs in the software.
Expand and finalise threat model

3 Background
3.1 Mount Namespaces
Mount namespaces were by far the most challenging part
of this project. When adding new features, they continu-
ously raised problems in both API description, expected be-
haviour, and performance of the tools given. A comparison
will be given in this section to two other namespaces, net-
work and UTS, to show the significant differences in the de-
sign goals of mount namespaces. Much of the programming
issue here comes from a fundamental lack of consistency
between mount namespaces and other namespaces in Linux,
which will be discussed further in this section.

3.1.1 Copy-on-Write. Comparing to network namespaces,
a slightly more modern namespace [Table 1], we see a huge
difference in what occurs when a new namespace is created.
When creating a new network namespace, one is immedi-
ately placed into a void, a network namespace containing
only a loopback adapter. That is, the process has no ability to
interact with the outside network, and no immediate relation
to the parent network namespace. To interact with alternate
namespaces, one must explicitly create a connection between
the two, or move a physical adapter into the new (empty)
namespace. Mount namespaces, rather than creating a new
and empty namespace, made the choice to create a copy of
the parent namespace, in a copy-on-write fashion. That is,
after creating a new mount namespace, the mount hierarchy
appears much the same as before.

3.1.2 Shared Subtrees. While some other namespaces are
copy-on-write, for example UTS namespaces, they do not
present the same problem as mount namespaces. Although
UTS namespaces are copy-on-write, it is trivial to create a
void by setting the hostname of the machine to a constant.
This removes any relation to the parent namespace and to
the outside machine. Mount namespaces instead maintain
a shared pointer with most filesystems, more akin to not
creating a new namespace than a copy-on-write namespace.

Shared subtrees [18] were introduced to provide a con-
sistent view of the unified hierarchy between namespaces.
Consider the example in Figure 1. unshare(1) creates a
non-shared tree, which presents the behaviour shown. Al-
though /mnt/cdrom from the parent namespace has been
bind mounted in the new namespace, the content of /mnt/cdrom
is not the same. This is because the filesystem newly mounted
on /mnt/cdrom is unavailable in the separate mount names-
pace. To combat this, shared subtrees were introduced. That
is, as long as /mnt/cdrom resides on a shared subtree, the

newly mounted filesystem will be available to a copy of
/mnt/cdrom in another namespace.

systemd made the choice to mount / as a shared subtree
[11]:

“Notwithstanding the fact that the default propagation
type for new mount is in many cases MS_PRIVATE, MS_SHARED
is typically more useful. For this reason, systemd(1) au-
tomatically remounts all mounts as MS_SHARED on system
startup. Thus, on most modern systems, the default propa-
gation type is in practice MS_SHARED.”

This means that when creating a new namespace, mounts
and unmounts are propagated in by default. Further, it means
that mounts and unmounts are propagated out of the names-
pace. This can be highly confusing behaviour, and unshare(1)
considers this behaviour inconsistent with the goals of un-
sharing - it immediately calls mount("none", "/", NULL,
MS_REC|MS_PRIVATE, NULL) after unshare(CLONE_NEWNS).
The reasoning for this is that containers created should not
present the behaviour given in Figure 1, and this behaviour
is unavoidable unless the parent mounts are shared, while it
is possible to disable the behaviour where necessary.

3.1.3 Lazy unmounting. Mount namespaces present fur-
ther interesting behaviour when unmounting initial root
filesystem. Although this may initially seem isolated to void
processes, it is also a problem in a container type system.
Consider again the container created in Figure 1 - the exist-
ing root must be unmounted after pivoting, to avoid keeping
the container fully connected to the outside root.

Referring again to network namespaces, sockets continue
to exist in their initial namespace, allowing for regular file-
descriptor passing semantics [8]. Extending upon this socket
behaviour is Wireguard, which creates adapters that may
be freely moved between namespaces while continuing to
connect externally from their initial parent [9, §7.3].

Something which behaves differently is the memory map-
ping of a currently running process’s binary. Considering the
example in Listing 1, which shows a short C program and the
result of running it, it is seen that the / mount is busy when
attempting the unmount. Given that the process was created
in the parent namespace, the behaviour of file descriptors
would suggest that the process would maintain a link to
the parent namespace for its own memory mapped regions.
However, the fact that the otherwise empty namespace has
a busy mount shows that this is not the case.

A feature called lazy unmounting or MNT_DETACH exists for
situations where a busy mount still needs to be unmounted.
Supplying the MNT_DETACH flag to umount2(2) causes the
mount to be immediately detached from the unified hierar-
chy, while remaining mounted until the last user has finished
with it. While this initially seems like a good solution, this
syscall is incredibly dangerous when combined with shared
subtrees. This behaviour is shown in Figure 2, where a lazy

Void Processes Conference’17, July 2017, Washington, DC, USA

#
#
#
#
#
#
mount / dev / s r 0 / mnt / cdrom
l s / mnt / cdrom
f i l e _ 1 f i l e _ 2

unshare −m
m o u n t _ c o n t a i n e r _ r o o t / tmp / a
mount −−b ind \

/ mnt / cdrom / tmp / a / mnt / cdrom
p i v o t _ r o o t / tmp / a / tmp / a / o l d r o o t
umount / tmp / a / o l d r o o t
#
l s / mnt / cdrom

Figure 1. Highly separated behaviour without shared subtrees between mount namespaces.

Listing 1. Behaviour when attempting to unmount / after
an unshare.
i n t main () {

i f (unshare (CLONE_NEWNS))
p e r r o r (" unshare ") ;

i f (mount (" none " , " / " , NULL ,
MS_REC | MS_PRIVATE , NULL))

p e r r o r (" mount ") ;
i f (umount (" / "))

p e r r o r (" umount ") ;
}
−−
umount : Dev ice or r e s o u r c e busy

(and hence recursive) unmount is combined with a shared
subtree to disastrous effect.

This behaviour raises questions about why a shared sub-
tree, which exists as an object, would need to be detached
recursively - decreasing the reference count to the shared
subtree itself would seem sufficient. The inconsistency is
best explained by looking at the development timeline for
the three features here: mount namespaces, shared subtrees,
and recursive lazy unmounts.

When lazy unmounting was added, in September 2001,
the author said the following [23]:

“There are only two things to take care of - a) if we detach
a parent we should do it for all children b) we should not
mount anything on "floating" vfsmounts. Both are obviously
staisfied for current code (presence of children means that
vfsmount is busy and we can’t mount on something that
doesn’t exist).”

This logic held even in the presence of namespaces, with
the intial patchset in February 2001 [23], as mounts were not
initially shared but duplicated between namespaces. How-
ever, when shared subtrees were added in January 2005 [25],
this logic stopped holding.

When setting up a container environment, one calls pivot_root(2)
to replace the old root with a new root for the container.

Then, the old root may be unmounted. Oftentimes the solu-
tion is to exec a binary in the new root first, meaning that
the old root is no longer in use and may be unmounted. This
works, as old root is only a reference in this namespace, and
hence may be unmounted with children - the vfsmount in
this namespace is not busy, in contradiction to the quotation.

If, instead, one wishes to continue running the existing
binary, this is possible with lazy unmounting. However, the
kernel only exposes a recursive lazy unmount. With shared
subtrees, this results in destroying the parent tree. While this
is avoidable by removing the shared propagation from the
subtree before unmounting, the choice to have MNT_DETACH
aggressively cross shared subtrees can be highly confusing,
and perhaps undersired behaviour in a world with shared
subtrees.

4 System Design
An example of running a multi-entrypoint application is
given in Figure 3. What was originally a monolithic applica-
tion becomes a set of applications that communicate with a
new shim. The shim does not replace the kernel, and instead
supplements it with new higher-level abilities. Each entry-
point receives input from the shim, and can return data to
the shim where appropriate. Most of this data is in the form
of file descriptors, which are treated as capabilities in this
system.

A multi-entrypoint application stores the requirements
for running it as static data in the ELF of the binary. When
launched, binfmt_misc is used to launch the application
with the multi-entrypoint shim. The shim decodes this data
and sets up processes and IPC accordingly.

The shim takes advantage of high levels of privilege to
be able to more effectively deprivilege an application than
an application with ambient authority could. For example,
creating a new network namespace requires CAP_SYS_ADMIN,
which would give many applications more privilege than
they require. By deferring to a shim with extra privileges, this
trusted code can be written only once, and avoid conferring
more privileges than otherwise required.

Conference’17, July 2017, Washington, DC, USA Jake Hillion

c a t / proc / mounts | grep udev
udev / dev devtmpfs rw , nosuid , r e l a t i . . .
#
#
c a t / proc / mounts | grep udev
c a t : / proc / mounts : No such f i l e or . . .

#
#
unshare −− p r o p a g a t i o n unchanged −m
umount − l /
#
#

Figure 2. Behaviour when attempting to unmount / from an unshared shell with a shared mount.

Figure 3. Interaction between the application and the envi-
ronment.

4.1 Building the Void
Preparing a void for a new process takes advantage of the
namespaces feature in Linux. However, many of the names-
paces are not designed for this purpose, so this is a more
difficult prospect than one might hope. Details of when each
namespace was added and some of the relevant features are
given in Table 1.

4.1.1 Mount namespaces. Mount namespaces were the
first [Table 1] namespaces introduced to Linux, in kernel
version 2.5.2 [CN]. In contrast to network namespaces, the
API is particularly unfriendly to creating a Void. The creation
of mount namespaces is copy-on-write, and many filesys-
tems are mounted shared. This means that they propagate
changes back through namespace boundaries. As the mount
namespace does not allow for creating an entirely new root,
extra care must be taken in separating processes. The method
taken in this system is mounting a new tmpfs file system in a
new namespace, which doesn’t propagate to the parent, and
using the pivot_root(8) command to make this the new
root. By pivoting to the tmpfs without bind mounting the
old root inside, the old root becomes completely inaccessible
from the namespace. Similarly, the tmpfs never appears in
the parent namespace. Finally, after ensuring the old root
is set to MNT_PRIVATE to avoid propagation (more details in
§3.1.2), the old root can be lazily detached. This allows the
binary from the parent namespace, the shim in this case, to
continue running correctly. Any new processes only have
access to the materials in the tmpfs void.

4.1.2 IPC namespaces. Creating a void with IPC names-
paces is pleasantly easy in comparison. From the manual
page [10]:

“Objects created in an IPC namespace are visible to all
other processes that are members of that namespace, but are
not visible to processes in other IPC namespaces.”

This provides exactly the correct semantics for a void,
particularly because it is not copy-on-write. IPC objects are
visible within a namespace if and only if they are created
within that namespace.

4.1.3 UTS namespaces. UTS namespaces provide isola-
tion of the hostname and domain name of a system between
processes. Similarly to IPC namespaces, all processes in the
same namespace see the same results for each of these. Un-
like IPC namespaces, UTS namespaces are copy-on-write.
That is, the value of each of these in the parent namespace
is the same in the child.

As the copied value does give information about the world
outside of the void process, slightly more must be done than
placing the process in a new namespace. Fortunately this is
easy for UTS namespaces, as the hostname and domain name
can be set to constants, removing any link to the parent.

4.1.4 user namespaces.
user namespaces

4.1.5 Network namespaces. Network namespaces were
added in kernel version 2.6.24 [3], some time after the initial
namespace boom. They present the optimal namespace for
creating a void. Creating a new network namespace immedi-
ately creates an entirely empty namespace. That is, the new
network namespace has no link whatsoever to the creating
network namespace. To add a link, one can create a virtual
Ethernet pair, with one adapter in each namespace [CN].
Alternatively, one can create a Wireguard adapter with send-
ing and receiving sockets in one namespace and the VPN
adapter in another [9, §7.3]. This allows for very high levels
of separation while still maintaining access to the primary
resource - the Internet or wider network.

4.1.6 PID namespaces. pid namespaces add a mapping
from the process IDs inside the namespace to process IDs in
the parent namespace. This continues until processes reach

Void Processes Conference’17, July 2017, Washington, DC, USA

Table 1. Table showing the date and kernel version each namespace was added. The date provides the first commit where they
appeared date of creation, and the kernel version the kernel release they appear in the changelog of. Namespaces are ordered
by kernel version then alphabetically. A checkbox is provided for whether the namespace displays copy-on-write behaviour,
discussed in more detail in Section 4.1.

Namespace CoW Date Kernel Version
mount ⊠ a 24th February 2001 [24] 2.5.2 [20]
ipc □ 2nd October 2006 [16] 2.6.19 [1]
uts ⊠ 2nd October 2006 [14] 2.6.19 [1]
user □ 15th July 2007 [17] 2.6.23 [2]

network □ 10th October 2007 [7] 2.6.24 [3]
pid □ 2nd October 2006 [6] 2.6.24 [3]

cgroup □ b 18th March 2016 [15] 4.6 [21]
time ⊠ 12th November 2019 [22] 5.6 [4]

aShared namespaces make for unique behaviour, see §3.1.2.
bcgroup namespaces provide a virtualised view of the unified cgroup namespace and do not allow private modification.

the top-level pid namespace. This isolation behaviour is dif-
ferent to that of some other namespaces, as each process
within the namespace represents a process in the parent
namespace too.

Although pid namespaces work quite well for creating a
void from the perspective of the inside process, some care
must be taken in the implementation, as the actions of pid
namespaces are highly affected by others. Some examples of
this slightly unusual behaviour are shown in Listing 2.

The first behaviour shown is that an unshare(CLONE_PID)
call followed immediately by an exec does not have the de-
sired behaviour. The reason for this is that the first process
created in the new namespace is given PID 1 and acts as an
init process. That is, whichever process the shell spawns first
becomes the init process of the namespace, and when that
process dies, the namespace can no longer create new pro-
cesses. This behaviour is avoided by either calling unshare/fork,
or utilising clone(2) instead. The unshare(3) binary pro-
vides a fork flag to solve this, while the implementation of
the void orchestrator uses clone(2) which combines the
two into a single syscall.

Secondly, we see that even in a shell that appears to be
working correctly, processes from outside of the new pid
namespace are still visible. This behaviour occurs because
the mount of /proc visible to the process in the new pid
namespace is the same as the init process. This is solved
by remounting /proc, available to unshare(3) with the
–mount-proc flag. Care must be taken that this mount is
completed in a new mount namespace, or else processes
outside of the pid namespace will be affected. The void or-
chestrator again avoids this by voiding the mount namespace
entirely, so any access to proc must be either bound to out-
side the namespace, or freshly mounted.

4.1.7 cgroup namespaces.
cgroup namespaces

Listing 2. Unshare behaviour with pid namespaces, with
and without forking and remounting proc.
$ unshare −p
−bash : f o r k : Cannot a l l o c a t e memory
(new s h e l l i n new p i d namespace)
ps ax | t a i l −n 3
−bash : f o r k : Cannot a l l o c a t e memory

$ unshare −− f o r k −p
(new s h e l l i n new p i d namespace)
ps ax | t a i l −n 3
2645 ? I 0 : 0 0 [kworker / . . .]
2689 p t s / 1 R+ 0 : 0 0 ps ax
2690 p t s / 1 S+ 0 : 0 0 t a i l −n 2

$ unshare −− f o r k −−mount−proc −p
(new s h e l l i n new p i d namespace)
ps ax | t a i l −n 3

1 p t s / 1 S 0 : 0 0 −bash
15 p t s / 1 R+ 0 : 0 0 ps ax
16 p t s / 1 S+ 0 : 0 0 t a i l −n 3

4.1.8 time namespaces. Time namespaces are the final
namespace added at the time of writing, added in kernel
version 5.6 [4]. The motivation for adding time namespaces
is given in the manual page [12]:

“The motivation for adding time namespaces was to allow
the monotonic and boot-time clocks to maintain consistent
values during container migration and checkpoint/restore.”

That is, time namespaces virtualise the appearance of sys-
tem uptime to processes, rather than attempting to virtualise
the wall clock time. This is important for processes that de-
pend on it in one specific situation: migration. If an uptime

Conference’17, July 2017, Washington, DC, USA Jake Hillion

dependent process is migrated from a machine that has been
up for a week to a machine that was booted a minute ago,
the guarantees provided by the clocks CLOCK_MONOTONIC
and CLONE_BOOTTIME no longer hold.

This results in time namespaces having very limited use-
fulness in a system that does not support migration, such as
the one presented here. Perhaps randomised offsets would
hide some information about the system, but the usefulness
is debatable and the quantity of bespoke syscalls would slow
down the application. Time namespaces are thus avoided in
this implementation.

4.2 Filling the void
Once a void has been created the goal is to reinsert enough
to run the application, and no more. To allow for running
applications in the void with minimal kernel changes, this
is done using a mixture of file-descriptor capabilities and
adding elements to the namespaces. Capabilities allow for
a clean experience where suitable, while adding elements
to namespaces creates a more Linux-like experience for the
application.

4.2.1 Files and directories. There are two options to pro-
vide access to files and directories in the void. Firstly, for
a single file, an already open file descriptor can be offered.
Consider the TLS broker of a TLS server with a persistent cer-
tificate and keyfile. Only these files are required to correctly
run the application - no view of a filesystem is necessary.
Providing an already opened file descriptor gives the process
a capability to those files while requiring no concept of a
filesystem, allowing that to remain a complete void. This is
possible because of the semantics of file descriptor passing
across namespaces - the file descriptor remains a capability,
regardless of moving into a namespace without access to the
file in question.

Alternatively, files and directories can be mounted in the
void namespace. This supports three things which the capa-
bilities do not: directories, dynamic linking, and applications
which have not been adapted to use file descriptors. Firstly,
the existing openat(2) calls are not suitable by default to
treat directory file descriptors as capabilities, as they allow
the search path to be absolute. This means that a process
with a directory file descriptor in another namespace can
access any files in that namespace [RN] by supplying an
absolute path. Secondly, dynamic linking is best served by
binding files, as these read only copies and the trusted bi-
naries ensure that only the required libraries can be linked
against. Finally, support for individual required files can be
added by using file descriptors, but many applications will
not trivially support it. Binding files allows for a form of
backwards compatibility.

4.2.2 Networking.
Write about reintroducing networking to the void.

Listing 3. A sample application using the Rust language
frontend.
[e n t r y p o i n t]
fn e n c r y p t (mut i n : F i l e , mut out : F i l e)

[e n t r y p o i n t]
fn main () {

l e t i n p u t _ f i l e = . . . ;
l e t o u t p u t _ f i l e = . . . ;

e n c r y p t (i n p u t _ f i l e , o u t p u t _ f i l e) ;
}

5 Language Frontends
The language frontends are an extremely important part
of this project, closing the gap between a static privilege
separation solution like SELinux [CN] and a dynamic one
like Capsicum [27]. I have implemented a language frontend
in Rust and will describe it in this section.

5.1 Rust
The Rust frontend uses macros to wrap functions with

high-level primitives into multi-entrypoint compatible en-
trypoints. Further, it allows calling these functions using the
new interface via the shim. Consider the example in Listing
3.

Firstly, the encrypt entrypoint is created. This is a regu-
lar Rust function which takes two high-level File objects, a
wrapped file descriptor. The entrypoint macro wraps this
function, providing in its place an extern "C" function that
is unmangled and takes argc/argv. This allows functions
with high-level arguments to be used as normal, with the
argument parsing abstracted away by the library.

Second is the ordinary main function for the application.
This is also tagged as an entrypoint, allowing the library to
help out with more calls. The example given here is that of
the encrypt method, which uses the API seen above. The use
of macros here allows the call to encrypt to remain type safe,
even though the call must pass through an external interface
(the shim itself).

A significant benefit to this approach is the ease of dis-
abling the multi-entrypoint application. By turning the en-
trypoint macro into identity with a crate feature, the code is
compiled without the aid of the multi-entrypoint shim. This
allows for significantly easier debugging, as the application
follows a single execution path, rather than needing to be
debugged as a distributed application.

Void Processes Conference’17, July 2017, Washington, DC, USA

Listing 4. An application that requires only stdout and
stderr.
[e n t r y p o i n t (s t d o u t)]
fn main () { p r i n t l n ! (" h e l l o ␣ world ! ") ; }

Figure 4. Process separation in a TLS server.

6 Example Applications
6.1 No Permissions
The cornerstone of strong process separation is an appli-
cation that is completely deprivileged. Listing 4 shows an
application which, when run under the shim, drops all privi-
leges except stdout. This is easy to achieve under the shim.

6.2 gzip
GNU gzip [13] is well structured for privilege separation,
though doesn’t implement it by default. There is a clear split
between the processing logic, selecting the items to do work
on, and the compression/decompression routines, each of
which are handed a pair of input and output file descriptors.
This is shown by Watson et al. in [27].

As C does not have high-level language features for multi-
entrypoint applications, adapting it is slightly more verbose
than the other examples seen. However, the resulting code
change is still only X lines, if a bit more intricate. This places
the risky compression and decompression routines in full
sandboxes, while still allowing the simpler argument pro-
cessing code ambient authority. The argument processing
code needs no additional Linux capabilities to manage this
permissioning, as the required capabilities are provided by
the shim.

6.3 TLS Server
Finally, a rudimentary TLS server is created to show the rich
privilege separation abilities of multi-entrypoint applications.
An example structure is shown in Figure 4. Rather than being
provided with a view of the network, the initial TCP handling

process is given an already bound socket listener by the shim.
This allows the TCP handler to live in an extremely restricted
zero-access network namespace, while still performing the
tasks of receiving new TCP connections.

Next, the TCP handler hands off the new TCP connections
to the shim. Though the figure shows this as a direct con-
nection between the TCP handler and the TLS handler, they
are passed through the shim, from which the shim spawns a
fresh TLS handler for each connection. The TLS handler is
handed file descriptors to the certificate and key files that it
requires, and hands back a decrypted request reader and an
empty response writer file descriptor to the shim.

Finally, this pair of decrypted request reader and response
writer are handed to a new process which handles the re-
quest. In the example case, this new process is handed a dirfd
to /var/www/html, which is bind-mounted into an empty
file system namespace by the shim. This allows the request
handler enough access to serve files, while restricting access
to anything else.

7 Evaluation
Write evaluation

8 Related Work
8.1 Virtual Machines and Containers
Virtual Machine solutions [5, 26] provide the ability to split
a single machine into multiple virtual machines. When plac-
ing a single application in each virtual machine, they are
effectively isolated from one another. Full fat container solu-
tions such as Docker [CN], containerd [CN], and systemd-
nspawn [CN] provide mechanisms to isolate an application
almost completely from other applications running on a sin-
gle machine. Some have claimed that this provides isolation
superior to virtual machines [19].

Both of these solutions are less effective at isolating parts
of an application from itself [CN with research]. Consider
running only a TLS web server in a virtual machine. Al-
though other applications will be unable to access the cer-
tificates, as they are in different virtual machines, methods
within the application that should not be able to access the
certificates still can.

While virtual machines and containers provide a strong
isolation at the application level, they are not a compelling
solution to intra-application privilege separation.

8.2 systemd
systemd [CN] provides a declarative interface to all of the
process separation techniques used in this work. Rather than
the responsibility of the programmer, creating these declara-
tive descriptions is most commonly left to the package main-
tainers. This work seeks to provide similar capabilities to the
people best suited to privilege separating an application: the
developers.

Conference’17, July 2017, Washington, DC, USA Jake Hillion

8.3 Capsicum
Capsicum [27] extends UNIX file descriptors in FreeBSD to
reflect the rights on the object they hold. These capabilities
may be shared between processes as other file descriptors.
The goals of both software are the same: make privilege
separated software better. However, we take quite different
approaches. Multi-entrypoint applications focus on building
a static definition really close to the code, while Capsicum al-
lows processes to dynamically privilege separate. This allows
applying static analysis to the policies, while also keeping
the definition close to the code.

9 Future Work
9.1 Dynamic Linking
Dynamic linking works correctly under the shim, however,
it currently requires a high level of manual input. Given that
the threat model in Section 2.1 specifies trusted binaries, it
is feasible to add a pre-spawning phase which appends read-
only libraries to the specification for each spawned process
automatically before creating appropriate voids. This would
allow anything which can link correctly on the host system
to link correctly in void processes.

10 Conclusion
Write conclusion

Acknowledgments
Write acknowledgements

References
[1] 2006. Linux Version 2.6.19 Changelog. https://kernelnewbies.org/

Linux_2_6_19
[2] 2007. Linux Version 2.6.23 Changelog. https://kernelnewbies.org/

Linux_2_6_23
[3] 2008. Linux Version 2.6.24 Changelog. https://kernelnewbies.org/

Linux_2_6_24
[4] 2020. Linux Version 5.6 Changelog. https://kernelnewbies.org/Linux_

5.6
[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the art of virtualization. ACM SIGOPS Operating Systems Review
37, 5 (Oct. 2003), 164–177. https://doi.org/10.1145/1165389.945462

[6] Sukadev Bhattiprolu. 2006. [PATCH] Define struct pspace.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=3fbc96486459324e182717b03c50c90c880be6ec

[7] Eric W. Biederman. 2007. [NET]: Basic network namespace infrastruc-
ture. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=5f256becd868bf63b70da8f2769033d6734670e9

[8] Eric W. Biederman. 2007. Re: netns : close all sockets at unshare ? https:
//lore.kernel.org/all/m1r6kccexw.fsf@ebiederm.dsl.xmission.com/

[9] Jason A. Donenfeld. 2017. WireGuard: Next Generation Kernel
Network Tunnel. In Proceedings 2017 Network and Distributed Sys-
tem Security Symposium. Internet Society, San Diego, CA. https:
//doi.org/10.14722/ndss.2017.23160

[10] Free Software Foundation. 2021. ipc_namespaces(7). https://man7.
org/linux/man-pages/man7/ipc_namespaces.7.html

[11] Free Software Foundation. 2021. mount_namespaces(7). https://man7.
org/linux/man-pages/man7/mount_namespaces.7.html

[12] Free Software Foundation. 2021. time_namespaces(7). https://man7.
org/linux/man-pages/man7/time_namespaces.7.html

[13] Jean-loup Gailly. 2020. Gzip. https://www.gnu.org/software/gzip/
[14] Serge E. Hallyn. 2006. [PATCH] namespaces: utsname: im-

plement utsname namespaces. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
4865ecf1315b450ab3317a745a6678c04d311e40

[15] Tejun Heo. 2016. [GIT PULL] cgroup namespace support for
v4.6-rc1. https://lore.kernel.org/all/20160318190919.GF20028@mtj.
duckdns.org/#r

[16] Kirill Korotaev. 2006. [PATCH] IPC namespace core.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=25b21cb2f6d69b0475b134e0a3e8e269137270fa

[17] Cedric Le Goater. 2007. user namespace: add the frame-
work. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=acce292c82d4d82d35553b928df2b0597c3a9c78

[18] Ram Pai and Alexander Viro. 2005. Shared Subtrees. https://www.
kernel.org/doc/Documentation/filesystems/sharedsubtree.txt Added
in commit 9cfcceea8f7e8f5554e9c8130e568bcfa98a3a64.

[19] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and
Larry Peterson. 2007. Container-based operating system virtualization:
a scalable, high-performance alternative to hypervisors. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007 (EuroSys ’07). Association for Computing Machinery,
New York, NY, USA, 275–287. https://doi.org/10.1145/1272996.1273025

[20] Linus Torvalds. 2002. Linux Kernel Version 2.5.2 Changelog. https:
//mirrors.edge.kernel.org/pub/linux/kernel/v2.5/ChangeLog-2.5.2

[21] Linus Torvalds. 2016. Linux 4.6-rc1. https://lore.kernel.org/all/CA+
55aFzBncC+F8TEb5KU1QVwA=PCA89mDp1VLNq008oZq8vpJQ@
mail.gmail.com/

[22] Andrei Vagin. 2020. ns: Introduce Time Namespace.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=769071ac9f20b6a447410c7eaa55d1a5233ef40c

[23] Alexander Viro. 2001. [PATCH] lazy umount (1/4).
https://lore.kernel.org/all/Pine.GSO.4.21.0109141427070.11172-
100000@weyl.math.psu.edu/

[24] Alexander Viro. 2001. [PATCH][CFT] per-process namespaces for
Linux. https://lore.kernel.org/all/Pine.GSO.4.21.0102242253460.24312-
100000@weyl.math.psu.edu/

[25] Alexander Viro. 2005. [RFC] shared subtrees. https://lore.kernel.org/
all/20050113221851.GI26051@parcelfarce.linux.theplanet.co.uk/

[26] Inc. VMware. 2008. Understanding Full Virtualization, Par-
avirtualization and Hardware Assist. Technical Report.
https://www.vmware.com/content/dam/digitalmarketing/vmware/
en/pdf/techpaper/VMware_paravirtualization.pdf

[27] Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris Kenn-
away. 2010. Capsicum: Practical Capabilities for UNIX.. In USENIX
Security Symposium, Vol. 46. 2.

https://kernelnewbies.org/Linux_2_6_19
https://kernelnewbies.org/Linux_2_6_19
https://kernelnewbies.org/Linux_2_6_23
https://kernelnewbies.org/Linux_2_6_23
https://kernelnewbies.org/Linux_2_6_24
https://kernelnewbies.org/Linux_2_6_24
https://kernelnewbies.org/Linux_5.6
https://kernelnewbies.org/Linux_5.6
https://doi.org/10.1145/1165389.945462
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3fbc96486459324e182717b03c50c90c880be6ec
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3fbc96486459324e182717b03c50c90c880be6ec
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5f256becd868bf63b70da8f2769033d6734670e9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5f256becd868bf63b70da8f2769033d6734670e9
https://lore.kernel.org/all/m1r6kccexw.fsf@ebiederm.dsl.xmission.com/
https://lore.kernel.org/all/m1r6kccexw.fsf@ebiederm.dsl.xmission.com/
https://doi.org/10.14722/ndss.2017.23160
https://doi.org/10.14722/ndss.2017.23160
https://man7.org/linux/man-pages/man7/ipc_namespaces.7.html
https://man7.org/linux/man-pages/man7/ipc_namespaces.7.html
https://man7.org/linux/man-pages/man7/mount_namespaces.7.html
https://man7.org/linux/man-pages/man7/mount_namespaces.7.html
https://man7.org/linux/man-pages/man7/time_namespaces.7.html
https://man7.org/linux/man-pages/man7/time_namespaces.7.html
https://www.gnu.org/software/gzip/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4865ecf1315b450ab3317a745a6678c04d311e40
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4865ecf1315b450ab3317a745a6678c04d311e40
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4865ecf1315b450ab3317a745a6678c04d311e40
https://lore.kernel.org/all/20160318190919.GF20028@mtj.duckdns.org/#r
https://lore.kernel.org/all/20160318190919.GF20028@mtj.duckdns.org/#r
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=25b21cb2f6d69b0475b134e0a3e8e269137270fa
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=25b21cb2f6d69b0475b134e0a3e8e269137270fa
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=acce292c82d4d82d35553b928df2b0597c3a9c78
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=acce292c82d4d82d35553b928df2b0597c3a9c78
https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
https://doi.org/10.1145/1272996.1273025
https://mirrors.edge.kernel.org/pub/linux/kernel/v2.5/ChangeLog-2.5.2
https://mirrors.edge.kernel.org/pub/linux/kernel/v2.5/ChangeLog-2.5.2
https://lore.kernel.org/all/CA+55aFzBncC+F8TEb5KU1QVwA=PCA89mDp1VLNq008oZq8vpJQ@mail.gmail.com/
https://lore.kernel.org/all/CA+55aFzBncC+F8TEb5KU1QVwA=PCA89mDp1VLNq008oZq8vpJQ@mail.gmail.com/
https://lore.kernel.org/all/CA+55aFzBncC+F8TEb5KU1QVwA=PCA89mDp1VLNq008oZq8vpJQ@mail.gmail.com/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=769071ac9f20b6a447410c7eaa55d1a5233ef40c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=769071ac9f20b6a447410c7eaa55d1a5233ef40c
https://lore.kernel.org/all/Pine.GSO.4.21.0109141427070.11172-100000@weyl.math.psu.edu/
https://lore.kernel.org/all/Pine.GSO.4.21.0109141427070.11172-100000@weyl.math.psu.edu/
https://lore.kernel.org/all/Pine.GSO.4.21.0102242253460.24312-100000@weyl.math.psu.edu/
https://lore.kernel.org/all/Pine.GSO.4.21.0102242253460.24312-100000@weyl.math.psu.edu/
https://lore.kernel.org/all/20050113221851.GI26051@parcelfarce.linux.theplanet.co.uk/
https://lore.kernel.org/all/20050113221851.GI26051@parcelfarce.linux.theplanet.co.uk/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf

	Abstract
	1 Introduction
	2 Motivation
	2.1 Threat Model

	3 Background
	3.1 Mount Namespaces

	4 System Design
	4.1 Building the Void
	4.2 Filling the void

	5 Language Frontends
	5.1 Rust

	6 Example Applications
	6.1 No Permissions
	6.2 gzip
	6.3 TLS Server

	7 Evaluation
	8 Related Work
	8.1 Virtual Machines and Containers
	8.2 systemd
	8.3 Capsicum

	9 Future Work
	9.1 Dynamic Linking

	10 Conclusion
	Acknowledgments
	References

